导航菜单

Tangent Series

Definition

Tangent series

The series n=1B2n(4)n(14n)(2n)!x2n1\sum_{n=1}^{\infty} \frac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1} is called the tangent series, where B2nB_{2n} are Bernoulli numbers.

Convergence

Convergence of the tangent series
  • Interval of convergence: (π2,π2)\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
  • Sum:

n=1B2n(4)n(14n)(2n)!x2n1=tanx\sum_{n=1}^{\infty} \frac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1} = \tan x

Note

Coefficients involve Bernoulli numbers and are intricate; in practice, we use the first few terms for approximation.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
B2nB_{2n}数学符号伯努利数伯努利数,用于正切级数展开
n!n!数学符号阶乘nn 的阶乘,n!=n×(n1)××1n! = n \times (n-1) \times \cdots \times 1
xx数学符号变量正切级数中的变量
π\pi希腊字母Pi(派)圆周率,约等于 3.14159
tan\tan数学符号正切正切函数

中英对照

中文术语英文术语音标说明
正切级数tangent series/ˈtændʒənt ˈsɪəriːz/正切函数的级数展开
伯努利数Bernoulli numbers/bɜːˈnuːli ˈnʌmbəz/数论中的一个重要数列
收敛区间interval of convergence/ˈɪntəvəl əv kənˈvɜːdʒəns/级数收敛的区间
收敛convergence/kənˈvɜːdʒəns/级数部分和序列有有限极限

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索