导航菜单

Geometric Series

Definition of a Geometric Series

Geometric series

The series n=0arn\sum_{n=0}^{\infty} ar^n is called a geometric series, where a0a \neq 0.

Convergence

Convergence of a geometric series

When r<1|r| < 1, the series converges and the sum is

n=0arn=a1r\sum_{n=0}^{\infty} ar^n = \frac{a}{1 - r}

When r1|r| \geq 1, the series diverges.

Proof

Let Sn=a+ar+ar2++arn1S_n = a + ar + ar^2 + \cdots + ar^{n-1}

Then rSn=ar+ar2+ar3++arnrS_n = ar + ar^2 + ar^3 + \cdots + ar^n

Subtracting gives (1r)Sn=aarn=a(1rn)(1-r)S_n = a - ar^n = a(1-r^n)

When r<1|r| < 1, limnrn=0\lim_{n \to \infty} r^n = 0

So limnSn=a1r\lim_{n \to \infty} S_n = \frac{a}{1-r}

Examples

Example 1

Determine the convergence of n=012n\sum_{n=0}^{\infty} \frac{1}{2^n} and find its sum.

Solution: This is a geometric series with a=1,r=12a = 1, r = \frac{1}{2}.

Since r=12<1|r| = \frac{1}{2} < 1, the series converges.

Sum: S=a1r=1112=2S = \frac{a}{1 - r} = \frac{1}{1 - \frac{1}{2}} = 2

Example 2

Determine the convergence of n=013n\sum_{n=0}^{\infty} \frac{1}{3^n} and find its sum.

Solution: This is a geometric series with a=1,r=13a = 1, r = \frac{1}{3}.

Since r=13<1|r| = \frac{1}{3} < 1, the series converges.

Sum: S=a1r=1113=32S = \frac{a}{1 - r} = \frac{1}{1 - \frac{1}{3}} = \frac{3}{2}

Example 3

Determine the convergence of n=02n\sum_{n=0}^{\infty} 2^n.

Solution: This is a geometric series with a=1,r=2a = 1, r = 2.

Since r=21|r| = 2 \geq 1, the series diverges.

练习题

练习 1

Determine the convergence of n=014n\sum_{n=0}^{\infty} \frac{1}{4^n} and find its sum.

参考答案

思路:Identify it as a geometric series and compare r|r| with 1.

步骤

  1. Series type: n=014n\sum_{n=0}^{\infty} \frac{1}{4^n} is geometric
  2. Parameters: a=1,r=14a = 1, r = \frac{1}{4}
  3. Convergence: r=14<1|r| = \frac{1}{4} < 1 so it converges
  4. Sum: S=a1r=1114=43S = \frac{a}{1-r} = \frac{1}{1-\frac{1}{4}} = \frac{4}{3}

答案:Convergent, sum 43\frac{4}{3}.

练习 2

Determine the convergence of n=025n\sum_{n=0}^{\infty} \frac{2}{5^n} and find its sum.

参考答案

思路:Geometric series; check r|r|.

步骤

  1. Series type: n=025n\sum_{n=0}^{\infty} \frac{2}{5^n} is geometric
  2. Parameters: a=2,r=15a = 2, r = \frac{1}{5}
  3. Convergence: r=15<1|r| = \frac{1}{5} < 1 so it converges
  4. Sum: S=a1r=2115=52S = \frac{a}{1-r} = \frac{2}{1-\frac{1}{5}} = \frac{5}{2}

答案:Convergent, sum 52\frac{5}{2}.

练习 3

Determine the convergence of n=0(1)n\sum_{n=0}^{\infty} (-1)^n.

参考答案

思路:Geometric with ratio r=1r=-1.

步骤

  1. Series type: n=0(1)n\sum_{n=0}^{\infty} (-1)^n is geometric
  2. Parameters: a=1,r=1a = 1, r = -1
  3. Convergence: r=11|r| = 1 \geq 1, so it diverges

答案:Divergent.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
\sum希腊字母Sigma(西格玛)求和符号,表示级数
\infty数学符号无穷大表示无穷级数,项数无限
rr数学符号公比几何级数中相邻两项的比值
aa数学符号首项几何级数的首项
SnS_n数学符号部分和级数的前 nn 项和
lim\lim数学符号极限表示数列或函数的极限

中英对照

中文术语英文术语音标说明
几何级数geometric series/dʒiːəˈmetrɪk ˈsɪəriːz/形如 n=0arn\sum_{n=0}^{\infty} ar^n 的级数
公比common ratio/ˈkɒmən ˈreɪʃiəʊ/几何级数中相邻两项的比值 rr
首项first term/fɜːst tɜːm/几何级数的第一项 aa
收敛convergence/kənˈvɜːdʒəns/级数部分和序列有有限极限
发散divergence/daɪˈvɜːdʒəns/级数部分和序列无有限极限
sum/sʌm/收敛级数的极限值
部分和partial sum/ˈpɑːʃəl sʌm/级数前 nn 项的和 SnS_n

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    先修课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
  2. 2

    Sequences

    先修课程

    Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

    前往课程
  3. 3

    The World of Limits in Advanced Mathematics

    先修课程

    Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

    前往课程
  4. 4

    Infinite Series

    当前课程

    Explore convergence tests, summation, power-series expansions, and applications.

    前往课程

搜索