导航菜单

Applications of Integrals

Integrals are powerful in both theory and practice. Here are geometric and physical applications.

几何应用

平面图形面积

If f(x)f(x) is continuous on [a,b][a,b], the area with the xx-axis is

S=abf(x)dxS = \int_a^b |f(x)| \, dx

Absolute value handles negative regions.

Examples

  1. y=x2y=x^2 on [0,1][0,1]: S=01x2dx=13S=\int_0^1 x^2 dx = \tfrac13.
  2. y=sinxy=\sin x on [0,π][0,\pi]: S=0πsinxdx=2S=\int_0^{\pi}\sin x dx = 2.
  3. y=x3xy=x^3 - x on [1,1][-1,1]: split sign; result 12\tfrac12.

平面曲线弧长

If y=f(x)y=f(x) is C1C^1 on [a,b][a,b],

L=ab1+[f(x)]2dxL = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx

Example y=x2y=x^2 on [0,1][0,1]: L=12(5+12ln(2+5))L=\tfrac12\bigl(\sqrt{5}+\tfrac12\ln(2+\sqrt5)\bigr).

旋转体体积

For y=f(x)y=f(x) continuous on [a,b][a,b], revolving about xx-axis:

V=πab[f(x)]2dxV = \pi \int_a^b [f(x)]^2 \, dx

Examples

  1. y=x2y=x^2, [0,1][0,1]: V=π5V=\dfrac{\pi}{5}.
  2. y=sinxy=\sin x, [0,π][0,\pi]: V=π22V=\dfrac{\pi^2}{2}.

物理应用

功(Work)

Force F(x)F(x) along xx from aa to bb:

W=abF(x)dxW = \int_a^b F(x) \, dx

Examples

  1. Spring F(x)=kxF(x)=kx: W=ka22W=\dfrac{ka^2}{2} from 00 to aa.
  2. Gravity F(r)=GMmr2F(r)=\dfrac{GMm}{r^2}: W=GMm(1a1b)W = GMm\left(\dfrac{1}{a}-\dfrac{1}{b}\right).

质心(Center of mass)

For thin plate with density ρ(x)\rho(x) on [a,b][a,b],

xˉ=abxρ(x)dxabρ(x)dx\bar{x} = \frac{\int_a^b x\,\rho(x)\,dx}{\int_a^b \rho(x)\,dx}

电荷分布、电场

Continuous charge density λ(x)\lambda(x) on a wire: total charge Q=λ(x)dxQ=\int \lambda(x)\,dx; fields computed via integrals.

概率

Continuous random variable with density f(x)f(x): P(X[a,b])=abf(x)dxP(X\in [a,b])=\int_a^b f(x)\,dx.


Summary

本文出现的符号

符号类型读音/说明在本文中的含义
\int数学符号integral定积分符号
$f(x)$符号
π\pi希腊字母Pi(派)圆周率

中英对照

中文术语英文术语音标说明
平面面积plane area/pleɪn ˈeəriə/曲线与坐标轴围成的面积
弧长arc length/ɑːk lɛŋkθ/平面曲线长度
旋转体体积volume of revolution/ˈvɒljuːm əv ˌrɛvəˈluːʃn/围绕轴旋转形成的体积
work/wɜːk/力做的功
质心center of mass/ˈsɛntər əv mæs/分布的平衡点
概率密度probability density/ˌprɒbəˈbɪləti ˈdɛnsəti/连续型随机变量的密度

搜索