Definition of the Definite Integral
The definition of the definite integral is the foundation of integration theory; via Riemann sums it gives a rigorous meaning to “accumulation.”
Riemann sum definition
Riemann sums were introduced by Bernhard Riemann (1826–1866), laying rigorous groundwork for definite integrals.
Definition of the definite integral
Let be defined on , partition it into subintervals:
Pick any point in each , and form
where . If exists, it is the definite integral of on :
Definite integral formula
Geometric meaning
is the (signed) area of the curvilinear trapezoid bounded by , , , and the -axis.
- If , it’s the area.
- If , it’s the negative of the area.
- If changes sign, it’s the algebraic sum of signed areas.
Existence
定理
If is continuous on , then is integrable on .
Corollaries:
- Continuous functions on closed intervals are integrable.
- Bounded functions with finitely many discontinuities are integrable.
- Monotone functions on closed intervals are integrable.
练习题
练习 1
Using the Riemann-sum definition, approximate with midpoints.
参考答案
思路:4 equal parts, , midpoints .
.
答案:。
练习 2
Explain the geometric meaning of .
参考答案
思路: is negative on , positive on ; areas and , sum .
答案:代数和为 0。
总结
本文出现的符号
| 符号 | 类型 | 读音/说明 | 在本文中的含义 |
|---|---|---|---|
| 希腊字母 | Xi(ksee) | 子区间内任意取点 | |
| 符号 | Delta x_i | 第 子区间长度 | |
| 希腊字母 | Sigma | 求和符号 | |
| 数学符号 | limit | 极限 | |
| 数学符号 | integral | 定积分符号 |
中英对照
| 中文术语 | 英文术语 | 音标 | 说明 |
|---|---|---|---|
| 定积分 | definite integral | /ˈdefɪnət ˈɪntɪɡrəl/ | 通过黎曼和极限定义的累积量 |
| 黎曼和 | Riemann sum | /ˈriːmən sʌm/ | 分割区间后求和近似积分 |
| 子区间 | subinterval | /sʌbˈɪntərvəl/ | 分割得到的区间 |
| 可积 | integrable | /ˈɪntɪɡrəbəl/ | 定积分存在的性质 |
| 曲边梯形 | curved trapezoid | /kɜːvd trəˈpiːzɔɪd/ | 由曲线围成的梯形区域 |
| 面积 | area | /ˈeəriə/ | 图形的大小 |