导航菜单

Newton–Leibniz Formula

The Newton–Leibniz formula links a definite integral to antiderivatives, giving a powerful way to compute integrals.

基本公式

Newton–Leibniz formula

If f(x)f(x) is continuous on [a,b][a, b] and F(x)F(x) is an antiderivative of f(x)f(x), then

abf(x)dx=F(b)F(a)\int_a^b f(x) \, dx = F(b) - F(a)

Notation: abf(x)dx=[F(x)]ab=F(b)F(a)\int_a^b f(x) \, dx = [F(x)]_a^b = F(b) - F(a)

Meaning

  1. Connects differentiation and integration via antiderivatives.
  2. Simplifies computation: avoids direct Riemann-sum calculations.
  3. Theoretical cornerstone of calculus.

公式的证明

思路

  1. Let F(x)=axf(t)dtF(x) = \int_a^x f(t)\,dt; then F(x)=f(x)F'(x) = f(x).
  2. Any antiderivative GG satisfies G(x)=F(x)+CG(x) = F(x) + C.
  3. abf(x)dx=F(b)F(a)=G(b)G(a)\int_a^b f(x)\,dx = F(b)-F(a) = G(b)-G(a).

详细过程

Step 1 Construct F(x)=axf(t)dtF(x) = \int_a^x f(t)\,dt, so F(x)=f(x)F'(x)=f(x).
Step 2 If G(x)=f(x)G'(x)=f(x), then G(x)=F(x)+CG(x)=F(x)+C.
Step 3 abf(x)dx=F(b)F(a)=G(b)G(a)\int_a^b f(x)\,dx = F(b)-F(a)=G(b)-G(a).

应用例子

基本应用

例 1 01x2dx\int_0^1 x^2 dx
解:F(x)=x33F(x)=\tfrac{x^3}{3},结果 13\tfrac13

例 2 0πsinxdx\int_0^{\pi} \sin x \, dx
解:F(x)=cosxF(x)=-\cos x,结果 22

复杂应用

例 3 1e1xdx=[lnx]1e=1\int_1^e \dfrac{1}{x} dx = [\ln x]_1^e = 1
例 4 0π/2cos2xdx=π4\int_0^{\pi/2} \cos^2 x \, dx = \frac{\pi}{4}(用恒等式 cos2x=1+cos2x2\cos^2 x = \frac{1+\cos 2x}{2})。

公式的推广

变限积分

ff 连续,则

ddxaxf(t)dt=f(x)\frac{d}{dx} \int_a^x f(t)\,dt = f(x)

复合换元

ff 连续,uu 可导且 u([c,d])[a,b]u([c,d])\subseteq[a,b]

cdf(u(x))u(x)dx=u(c)u(d)f(t)dt\int_c^d f(u(x))u'(x)\,dx = \int_{u(c)}^{u(d)} f(t)\,dt

练习题

  1. 01x3dx\int_0^1 x^3 dx

    参考答案
    14\tfrac14

  2. 0π/2cosxdx\int_0^{\pi/2} \cos x \, dx

    参考答案
    11

  3. 141xdx\int_1^4 \dfrac{1}{\sqrt{x}} dx

    参考答案
    22

  4. 01exdx\int_0^1 e^x dx

    参考答案
    e1e-1


总结

本文出现的希腊字母

希腊字母读音说明
π\piPi(派)圆周率,在积分上限中出现

搜索