The Newton–Leibniz formula links a definite integral to antiderivatives, giving a powerful way to compute integrals.
基本公式
Newton–Leibniz formula
Named after Isaac Newton (1643–1727) and Gottfried Wilhelm Leibniz (1646–1716), who independently founded calculus. Leibniz also introduced the integral symbol ∫.
If f(x) is continuous on [a,b] and F(x) is an antiderivative of f(x), then
∫abf(x)dx=F(b)−F(a)
Notation: ∫abf(x)dx=[F(x)]ab=F(b)−F(a)
Meaning
Connects differentiation and integration via antiderivatives.
Simplifies computation: avoids direct Riemann-sum calculations.
Theoretical cornerstone of calculus.
公式的证明
思路
Let F(x)=∫axf(t)dt; then F′(x)=f(x).
Any antiderivative G satisfies G(x)=F(x)+C.
∫abf(x)dx=F(b)−F(a)=G(b)−G(a).
详细过程
Step 1 Construct F(x)=∫axf(t)dt, so F′(x)=f(x). Step 2 If G′(x)=f(x), then G(x)=F(x)+C. Step 3∫abf(x)dx=F(b)−F(a)=G(b)−G(a).