导航菜单

Definition and Derivative Property

After the area intuition, we formalize the upper-limit integral function and prove its key property: its derivative equals the integrand.

定义

Upper-limit integral function

Let f(x)f(x) be continuous on [a,b][a, b]. Define

F(x)=axf(t)dtF(x) = \int_a^x f(t) \, dt

This is the upper-limit integral function.

基本性质

定理 1

For F(x)=axf(t)dtF(x) = \int_a^x f(t) \, dt on [a,b][a, b], FF is differentiable and

F(x)=f(x)F'(x) = f(x)

This is the “first part” of the Fundamental Theorem of Calculus, linking differentiation and integration.

证明的详细过程

步骤 1:利用导数的定义

F(x)=limh0F(x+h)F(x)h=limh0ax+hf(t)dtaxf(t)dthF'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{\int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt}{h}

步骤 2:利用积分的区间可加性

F(x)=limh0xx+hf(t)dthF'(x) = \lim_{h \to 0} \frac{\int_x^{x+h} f(t) \, dt}{h}

步骤 3:利用积分中值定理

There exists ξ[x,x+h]\xi \in [x, x+h] (or [x+h,x][x+h, x]) such that

xx+hf(t)dt=f(ξ)h\int_x^{x+h} f(t) \, dt = f(\xi) \cdot h

步骤 4:取极限

F(x)=limh0f(ξ)hh=limh0f(ξ)=f(x)F'(x) = \lim_{h \to 0} \frac{f(\xi) \cdot h}{h} = \lim_{h \to 0} f(\xi) = f(x)

The proof is complete. The upper-limit integral function has clear geometric meaning and is differentiable, enabling the applications that follow.


总结

本文出现的符号

符号类型读音/说明在本文中的含义
ξ\xi希腊字母Xi(ksee)积分中值定理中的区间内取值点
F(x)F'(x)数学符号导数积分上限函数的导数,等于被积函数

中英对照

中文术语英文术语音标说明
积分上限函数upper-limit integral function/ˈʌpər ˈlɪmɪt ɪnˈtɛɡrəl ˈfʌŋkʃən/形如 F(x)=axf(t)dtF(x)=\int_a^x f(t)\,dt 的函数
积分中值定理mean value theorem for integrals/miːn ˈvæljuː ˈθɪərəm fɔːr ˈɪntɪɡrəlz/保证存在 ξ\xi 使积分等于 f(ξ)f(\xi) 乘区间长度
微积分基本定理Fundamental Theorem of Calculus/ˌfʌndəˈmɛntl ˈθɪərəm əv ˈkælkjʊləs/连接导数与定积分的核心定理

搜索