导航菜单

Quadratic Function Example in Integral Calculus

Intro

After the linear case, look at a slightly harder one: y=x2y = x^2.

Features:

  • Parabola opening upward.
  • On [a,b][a,b] it forms a curvilinear trapezoid.
  • No simple geometric formula—need integration.

Problem

Find the shaded area.

Integral setup

  1. Split [a,b][a,b] into thin strips.
  2. Strip area = height × width.
  3. Sum all strips.

For y=x2y=x^2:

  • Height: xi2x_i^2
  • Width: Δx\Delta x
  • Area: xi2Δxx_i^2 \Delta x

Total area:

i=1nxi2Δx\sum_{i=1}^{n} x_i^2 \cdot \Delta x

Take the limit:

limni=1nxi2Δx\lim_{n \to \infty} \sum_{i=1}^{n} x_i^2 \cdot \Delta x

Key formula

Sum of squares

i=1ni2=n(n+1)(2n+1)6\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}

Sketch of computation

With xi=a+iΔxx_i = a + i\Delta x, Δx=ban\Delta x = \tfrac{b-a}{n}, expand the sum and apply the square-sum formula. Taking the limit gives the standard result:

abx2dx=[x33]ab=b3a33\int_a^b x^2 dx = \left[\frac{x^3}{3}\right]_a^b = \frac{b^3-a^3}{3}

So the area under y=x2y=x^2 on [a,b][a,b] equals b3a33\dfrac{b^3-a^3}{3}.

搜索