导航菜单

Fundamental Ideas of Integral Calculus

问题

Imagine you are a 17th-century mathematician facing a simple-looking question: How do we find the area of an irregular shape?

Examples:

  • The area of land bounded by a winding river
  • An irregular garden
  • A piece of land with a complex outline

Known formulas then:

  • Rectangle: length × width
  • Triangle: base × height ÷ 2
  • Circle: πr2\pi r^2

But how to handle irregular shapes?

数学家的突破

Mathematicians found a key observation:

If you slice an irregular region into many thin rectangles, then:

  1. Each rectangle’s area = height × width
  2. Total area = sum of all rectangles
  3. As rectangles get thinner, the approximation approaches the true area

Thus, complex areas can be computed using simple rectangles!

矩形条数量:16

调整矩形条的数量,观察如何将不规则图形分割成矩形条来计算面积。

当矩形条越来越窄时,近似面积越来越接近真实面积。

如何计算矩形条的总面积

Step 1: partition the interval

Split [a,b][a,b] into nn equal parts:

  • Width: Δx=ban\Delta x = \dfrac{b-a}{n}
  • ii-th subinterval: [xi1,xi][x_{i-1}, x_i], where xi=a+iΔxx_i = a + i\Delta x

Step 2: rectangle area

  • Width: Δx\Delta x
  • Height: f(xi)f(x_i)
  • Area: Ai=f(xi)ΔxA_i = f(x_i)\cdot \Delta x

Step 3: sum

Rectangle approximation

Sn=i=1nf(xi)ΔxS_n = \sum_{i=1}^{n} f(x_i)\, \Delta x

Step 4: take the limit

When nn\to\infty (so Δx0\Delta x \to 0),

Core idea of integrals

Exact area=limni=1nf(xi)Δx\text{Exact area} = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i)\, \Delta x

积分学的核心思想

  • More rectangles → better approximation
  • Infinitely many infinitesimal rectangles → exact area
  • Integrals approximate complex areas by summing infinitely many tiny rectangles
矩形数量:1
x y y = x² - 积分概念演示

当矩形数量越来越多时,近似面积越来越接近真实面积

这就是积分的几何意义:用无穷多个无穷小的矩形来精确计算面积

当前近似面积:0.0000

真实积分值:2.6667

搜索